Kiryu Sento
毕设: 协同差分进化算法

毕设: 协同差分进化算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
def CCDE(pop_size, generation, length, model, image, target_label, eps, batch_size, gradient):
generation_save = np.zeros((10000,))
problem = Problem(model, image, target_label, eps, batch_size) # 子种群的问题假定一致, 假定子种群的数量为2, 其中一个作为主种群,另一个作为辅助种群(提供优秀个体)
subpop = [np.random.uniform(-1, 1, size=(pop_size, length)) for _ in range(2)]
# pop = np.random.uniform(-1, 1, size=(pop_size, length))
# for i in range(len(subpop)):
n_subpop = len(subpop)
if (not (gradient is None)):
for i in range(n_subpop):
subpop[i][0] = np.reshape(np.sign(gradient), (length)) # 初始化每个子种群
max_eval = pop_size * generation
eval_count = 0
fitness, fit = np.zeros((n_subpop,)), np.zeros((n_subpop,))
for i in range(n_subpop):
fitness[i], fit[i] = problem.evaluate(subpop[i])
eval_count += pop_size
count = 0
fitmin = np.zeros((n_subpop,))
for i in range(n_subpop):
fitmin[i]=np.min(fitness)
generation_save[count] = fitmin
F = 0.5
if (len(np.where(fitness[0] == 0)[0]) == 0):
while (eval_count < max_eval):
count += 1
for i in range(n_subpop):# 每个子种群分别进化变异
off = mating(subpop[i],F) # 变异
off_fitness , off_fit = problem.evaluate(off)
eval_count += pop_size
subpop[i] ,fitness[i] ,fit[i] = select(subpop[i],fitness[i],fit[i], off, off_fitness, off_fit) # 选择最优适应度的个体
subpop[i], fitness[i], fit[i] = complement(fit[i], subpop[i], fitness[i], problem)
fitmin[i] = np.min(fitness[i])
subpop[0] ,fitness[0] ,fit[0] = select(subpop[0],fitness[0],fit[0],subpop[1],fitness[1],fit[1]) # 选择最优适应度的个体
subpop[0], fitness[0], fit[0] = complement(fit[0], subpop[0], fitness[0], problem)
generation_save[count] = np.min(fitmin[0])
if (len(np.where(fitness[0] == 0)[0]) != 0):
break
if (len(np.where(fitness[0] == 0)[0]) != 0):
return subpop[0][np.where(fitness[0] == 0)[0][0]], eval_count, generation_save[:count + 1]
else:
return subpop[0][0], eval_count/100, generation_save[:count + 1]
本文作者:Kiryu Sento
本文链接:https://wandernforte.github.io/kirameki/毕设-协同差分进化算法/
版权声明:本文采用 CC BY-NC-SA 3.0 CN 协议进行许可