1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| def run( self, model: Model, inputs: T, criterion: Union[Criterion, T], *, early_stop: Optional[float] = None, starting_points: Optional[T] = None, **kwargs: Any, ) -> T: raise_if_kwargs(kwargs) _, t_restore_type = ep.astensor_(torch.zeros(1)) originals, restore_type = ep.astensor_(inputs)
verify_input_bounds(originals, model)
criterion = get_criterion(criterion) is_adversarial = get_is_adversarial(criterion, model)
init_attack = LinearSearchBlendedUniformNoiseAttack(steps=50) logging.info( f"Neither starting_points nor init_attack given. Falling" f" back to {init_attack!r} for initialization." ) best_advs = ep.astensor(torch.rand_like(t_restore_type(inputs))) del inputs, kwargs tb = TensorBoard(logdir=self.tensorboard)
|